Effects of Soil Temperature, Flooding, and Organic Matter Addition on N2O Emissions from a Soil of Hongze Lake Wetland, China

نویسندگان

  • Yan Lu
  • Hongwen Xu
چکیده

The objectives of this study were to test the effects of soil temperature, flooding, and raw organic matter input on N2O emissions in a soil sampled at Hongze Lake wetland, Jiangsu Province, China. The treatments studied were-peat soil (I), peat soil under flooding (II), peat soil plus raw organic matter (III), and peat soil under flooding plus organic matter. These four treatments were incubated at 20°C and 35°C. The result showed that temperature increase could enhance N2O emissions rate and cumulative emissions significantly; moreover, the flooded soil with external organic matter inputs showed the lowest cumulative rise in N2O emissions due to temperature increment. Flooding might inhibit soil N2O emissions, and the inhibition was more pronounced after organic matter addition to the original soil. Conversely, organic matter input explained lower cumulative N2O emissions under flooding. Our results suggest that complex interactions between flooding and other environmental factors might appear in soil N2O emissions. Further studies are needed to understand potential synergies or antagonisms between environmental factors that control N2O emissions in wetland soils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution Characteristic of Soil Organic Carbon Fraction in Different Types of Wetland in Hongze Lake of China

Soil organic carbon fractions included microbial biomass carbon (MBC), dissolved organic carbon (DOC), and labile organic carbon (LOC), which was investigated over a 0-20 cm depth profile in three types of wetland in Hongze Lake of China. Their ecoenvironmental effect and the relationships with soil organic carbon (SOC) were analyzed in present experiment. The results showed that both active an...

متن کامل

Effect of controlled drainage in the wheat season on soil CH4 and N2O emissions during the rice season

The effect of draining crop fields during the wheat season on the soil CH4 andN2O emissions during the rice season in this article. There were four treatments:traditional cultivation during the wheat season + cultivation without fertilizationduring the rice season (CK1 field), traditional cultivation during the wheat season +traditional cultivation during the rice season (CK2 field), draining t...

متن کامل

Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions: A case study for water management of rice agriculture of China

[1] Since the early 1980s, water management of rice paddies in China has changed substantially, with midseason drainage gradually replacing continuous flooding. This has provided an opportunity to estimate how a management alternative impacts greenhouse gas emissions at a large regional scale. We integrated a process-based model, DNDC, with a GIS database of paddy area, soil properties, and man...

متن کامل

Warmer temperature accelerates methane emissions from the Zoige wetland on the Tibetan Plateau without changing methanogenic community composition

Zoige wetland, locating on the Tibet Plateau, accounts for 6.2% of organic carbon storage in China. However, the fate of the organic carbon storage in the Zoige wetland remains poorly understood despite the Tibetan Plateau is very sensitive to global climate change. As methane is an important greenhouse gas and methanogenesis is the terminal step in the decomposition of organic matter, understa...

متن کامل

Effects of Different Vegetation Zones on CH4 and N2O Emissions in Coastal Wetlands: A Model Case Study

The coastal wetland ecosystems are important in the global carbon and nitrogen cycle and global climate change. For higher fragility of coastal wetlands induced by human activities, the roles of coastal wetland ecosystems in CH4 and N2O emissions are becoming more important. This study used a DNDC model to simulate current and future CH4 and N2O emissions of coastal wetlands in four sites along...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014